第2問
東進 過去問データベースより引用
(1)
\begin{eqnarray} \overrightarrow{PQ} &=& Q(4, -4, 9)-P(1, 2, 3) \\ &=& (3, -6, 6)\end{eqnarray}
\begin{eqnarray} \overrightarrow{PH} &=& \frac{t}{3}・(3, -6, 6) \\ &=& (t, -2t, 2t) \end{eqnarray}
\begin{eqnarray} {\color{red}{\overrightarrow{OH}}} &=& \overrightarrow{OP}+\overrightarrow{PH} \\ &=& (1, 2, 3)+(t, -2t, 2t) \\ &=& {\color{red}{(1+t, 2-2t, 3+2t)}}\end{eqnarray}
\begin{eqnarray} {\color{red}{\overrightarrow{PQ}・\overrightarrow{HA}}} &=& \overrightarrow{PQ}・(\overrightarrow{OA}-{\color{blue}{\overrightarrow{OH}}}) \\ &=& (3, -6, 6)・\{(9, 1, 7)-{\color{blue}{(1+t, 2-2t, 3+2t)}}\} \\ &=& (3, -6, 6)・(8-t, -1+2t, 4-2t) =0 \end{eqnarray}
\begin{eqnarray} 27t-54=0 \end{eqnarray}
\begin{eqnarray} {\color{red}{t=2}} \end{eqnarray}
よって、座標\(\displaystyle H\)は、
\begin{eqnarray} \overrightarrow{OH} &=& (1+2, 2-2・2, 3+2・2) \\ &=& {\color{red}{(3, -2, 7)}}\end{eqnarray}
線分\(\displaystyle HA\)の長さは、
\begin{eqnarray} \|\overrightarrow{HA}\| &=& \sqrt{(8-t)^{2}+(-1+2t)^{2}+(4-2t)^{2}} \\ &=& \sqrt{(8-2)^{2}+(-1+2・2)^{2}+(4-2・2)^{2}} \\ &=& \sqrt{36+9} \\ &=& {\color{red}{3\sqrt{5}}}\end{eqnarray}
(2)
\begin{eqnarray} \overrightarrow{OC} &=& (1, 2, 3)+u(0, 0, -18)+v(3, -6, 6) \\ &=& (1+3v, 2-6v, 3-18u+6v) \end{eqnarray}
\(\displaystyle HC⊥ℓ\)より、
\begin{eqnarray} {\color{red}{\overrightarrow{HC}・\overrightarrow{PQ}}} &=& (\overrightarrow{OC}-\overrightarrow{OH})・\overrightarrow{PQ} \\ &=& \{(1+3v, 2-6v, 3-18u+6v)-(3, -2, 7)\}・(3, -6, 6) \\ &=& (-2+3v, 4-6v, -4-18u+6v)・(3, -6, 6) \\ &=& -2+3v-4u = {\color{red}{0}} \end{eqnarray}
\(\displaystyle \overrightarrow{HC}・\overrightarrow{PQ}=0\)より、\(\displaystyle 3v = 2+4u\)
これを、\(\displaystyle HC=HA\)に代入する。
\begin{eqnarray} HC=HA \end{eqnarray}
\begin{eqnarray} \sqrt{(-2+3v)^{2}+(4-6v)^{2}+(-4-18u+6v)^{2}}=3\sqrt{5} \end{eqnarray}
\begin{eqnarray} \sqrt{(4u)^{2}+(-8u)^{2}+(-10u)^{2}}=3\sqrt{5} \end{eqnarray}
\begin{eqnarray} 16u^{2}+64u^{2}+100u^{2}=45 \end{eqnarray}
\begin{eqnarray} u^{2}=\frac{1}{4} \end{eqnarray}
\begin{eqnarray} {\color{red}{u=\pm\frac{1}{2}}} \end{eqnarray}
\(\displaystyle u=\frac{1}{2}\)のとき、\(\displaystyle {\color{red}{v=\frac{4}{3}}}\) \(\displaystyle u=-\frac{1}{2}\)のとき、\(\displaystyle {\color{red}{v=0}}\)
よって、\(\displaystyle \overrightarrow{OC} = (1+3v, 2-6v, 3-18u+6v)\)に代入する!