第3問
東進 過去問データベースより引用
(1)
\begin{eqnarray} x^{3}-3x^{2}=mx+n \\ x^{3}-3x^{2}-mx-n=0 \end{eqnarray}
\begin{eqnarray} \left\{\begin{array}{l} a+b+c = 3 \\ ab+bc+ca = -m \\ abc=n \end{array} \right. \end{eqnarray}
一番上の、\(\displaystyle {\color{red}{a+b+c=3}}⇒a+c=3-b\)を\(\displaystyle {\color{red}{b=\frac{a+c}{2}}}\)に代入する!
\begin{eqnarray} b=\frac{3-b}{2} \\ 2b=3-b \\ {\color{red}{b=1}} \end{eqnarray}
(2)
\(\displaystyle b=1\)を代入すると、解と係数の関係に代入する!
\begin{eqnarray} \left\{\begin{array}{l} a+c = 2 \\ a+c+ca = -{\color{red}{m}} \\ ac={\color{red}{n}} \end{array} \right. \end{eqnarray}
\(\displaystyle m\)と\(\displaystyle n\)の式に、\(\displaystyle c=2-a\)を代入する!
\begin{eqnarray} m=-a-c-ca \\ m=-a-(2-a)-(2-a)a \\ {\color{red}{m=a^{2}-2a-2}} \end{eqnarray}
\begin{eqnarray} n=ac \\ n=a(2-a) \\ {\color{red}{n=-a^{2}+2a}} \end{eqnarray}
\(\displaystyle a<b\)より、
\begin{eqnarray} {\color{red}{a<1}} \end{eqnarray}
(3)
\begin{eqnarray} {\color{red}{\tanα}} &=& m \\ &=& {\color{red}{a^{2}-2a-2}} \end{eqnarray}
曲線\(\displaystyle C=f(x)\)とすると、\(\displaystyle f'(x)=3x^{2}-6x\)
よって、
\begin{eqnarray} {\color{blue}{\tanβ}} &=& f'(a) \\ &=& {\color{blue}{3a^{2}-6a}} \end{eqnarray}
\begin{eqnarray} {\color{red}{\frac{1}{\tan(β-α)}}} &=& \frac{1+\tanβ\tanα}{\tanβ-\tanα} \\ &=& \frac{1+(3a^{2}-6a)(a^{2}-2a-2)}{(3a^{2}-6a)-(a^{2}-2a-2)} \\ &=& {\color{red}{\frac{3a^{4}-12a^{3}+6a^{2}+12a+1}{2a^{2}-4a+2}}} \end{eqnarray}
(4)
\begin{eqnarray} \frac{1}{\tan(β-α)} &=& \frac{3a^{4}-12a^{3}+6a^{2}+12a+1}{2a^{2}-4a+2} \\ &=& \frac{3a^{4}-12a^{3}+6a^{2}+12a+1}{2({\color{red}{a^{2}-2a+1}})} \\ &=& \frac{3({\color{red}{a^{2}-2a+1}})(a^{2}-2a-3)+10}{2(a^{2}-2a+1)} \\ &=& \frac{3}{2}(a^{2}-2a-3)+\frac{5}{a^{2}-2a+1} \\ &=& \frac{3}{2}{\color{red}{(a-1)^{2}}}+\frac{5}{{\color{red}{(a-1)^{2}}}}-6 \end{eqnarray}
\(\displaystyle \frac{3}{2}(a-1)^{2}=X\) \(\displaystyle \frac{5}{(a-1)^{2}}=Y\)と置く。
\(\displaystyle {\color{blue}{a<1}}\)より、\(\displaystyle {\color{red}{X>0}}\) \(\displaystyle {\color{red}{Y>0}}\)
\begin{eqnarray} \frac{X+Y}{2} \text{≧} \sqrt{XY} \\ X+Y \text{≧} 2\sqrt{XY} \\ \end{eqnarray}
よって、
\begin{eqnarray} \frac{3}{2}(a-1)^{2}+\frac{5}{(a-1)^{2}} &\text{≧}& 2\sqrt{\frac{3}{2}(a-1)^{2}・\frac{5}{(a-1)^{2}}} \\ \frac{3}{2}(a-1)^{2}+\frac{5}{(a-1)^{2}}-6 &\text{≧}& 2\sqrt{\frac{15}{2}}-6 \\ {\color{red}{\frac{1}{\tan(β-α)}}} &\text{≧}& {\color{red}{\sqrt{30}-6}} \end{eqnarray}
等号成立条件より、\(\displaystyle a\)の値を求める。
\begin{eqnarray} \frac{3}{2}(a-1)^{2} &=& \frac{5}{(a-1)^{2}} \\ (a-1)^{4} &=& \frac{10}{3} \\ a &=& {\color{red}{1-{}^{4}\sqrt{\frac{10}{3}}}}({\color{blue}{a<1}})\end{eqnarray}